Henkel Adhesive Technologies

Henkel Adhesive Technologies

DATA
CENTER

Data center speed and volume are skyrocketing as analytics, high-performance computing, and artificial intelligence move mainstream. Inside hyperscale data centers, powerful components must deliver high-speed processing and faster data access, creating smaller, denser and hotter components that do more with less.

Together, these factors require effective thermal management and protection from stress and harsh conditions—at the component level—to meet heightening performance needs.

This is an image showing a futuristic data center.

At a glance

20%

Cost increase each year

...
Yet budgets are only rising 6% per year1.

300 MW

Heat

...
generated from a data center campus can power a midsize city2.

40%

of data center’s energy consumption

...
is spent on powering cooling and ventilation systems3.

Explore our Data & telecommunications, Broadband connectivity, and Optical solutions

an engineer in a server room inspecting a mainframe computer

You need to accept cookies to play this video

Data Center solutions

Next-generation data centers are getting hotter. They must provide faster speeds and rapid data access with smaller, higher-density components as data volumes skyrocket. Heat degrades performance. Advanced materials help with thermal management, long-term reliability, and stress protection.

Insights

Applications

Rendered graphic of a line card with multiple heatsinks inserted over a transparent background.
Thermal GAP PAD® materials

Low-modulus, high-conductivity Bergquist® GAP PAD® materials provide excellent conformability and low-stress thermal performance for IC devices not requiring a larger heat sink attachment.

Thermally conductive adhesives

Bergquist® and LOCTITE® thermally conductive adhesives are designed to provide excellent heat dissipation for thermally sensitive components. They are available in self-shimming and non-self-shimming options to satisfy application-specific requirements and ease of use.

Thermal gels

One-part, liquid formable gel materials provide a balance between process flexibility, low component stress and high-reliability thermal performance. Dispensable for high-volume manufacturing, thermal gels are available in thermal conductivities up to 6.0 W/m-K, and provide a range of attributes including low volatility, high vertical gap stability, and reliability in challenging environments.

Phase change materials

Larger, high-performance Layer 1/Layer 2 ASIC and/FPGA devices must effectively dissipate heat for proper function. Bergquist® phase change materials are the optimal solution, providing a mess-free alternative to thermal grease.

Routers/Switches

The use of advanced materials in server motherboards and line cards for routers and switches provides a huge upside in scale, performance, and cost reduction. One small uptick in performance, repeated thousands of times, has a huge impact on router and switch performance.

3D image of a server rack
Thermal GAP PAD® materials

Low-modulus, high-conductivity Bergquist® GAP PAD® materials provide excellent conformability and low-stress thermal performance for IC devices not requiring a larger heat sink attachment.

Thermally conductive adhesives

Bergquist® and LOCTITE® thermally conductive adhesives are designed to provide excellent heat dissipation for thermally sensitive components. They are available in self-shimming and non-self-shimming options to satisfy application-specific requirements and ease of use.

Thermal gels

One-part, liquid formable gel materials provide a balance between process flexibility, low component stress and high-reliability thermal performance. Dispensable for high-volume manufacturing, thermal gels are available in thermal conductivities up to 6.0 W/m-K, and provide a range of attributes including low volatility, high vertical gap stability, and reliability in challenging environments.

Phase change materials

Larger, high-performance Layer 1/Layer 2 ASIC and/FPGA devices must effectively dissipate heat for proper function. Bergquist® phase change materials are the optimal solution, providing a mess-free alternative to thermal grease.

Servers

Whether it’s a few servers in a closet or 10,000 in a data center, a small reduction in heat or uptick in component performance can have a huge, aggregate impact on infrastructure performance. Advanced materials can be used throughout a circuit board to help optimize their performance and the network that uses them.

3D image of a server rack
Thermal gels

One-part, liquid formable gel materials provide a balance between process flexibility, low component stress and high-reliability thermal performance. Dispensable for high-volume manufacturing, thermal gels are available in thermal conductivities up to 6.0 W/m-K, and provide a range of attributes including low volatility, high vertical gap stability, and reliability in challenging environments.

Phase change materials

Larger, high-performance Layer 1/Layer 2 ASIC and/FPGA devices must effectively dissipate heat for proper function. Bergquist® phase change materials are the optimal solution, providing a mess-free alternative to thermal grease.

Storage

Advanced materials used in storage hardware increased stability, reliability, and transfer rates. Every uptick in performance and reliability reduces costs while delivering on increasing user expectations.

Solutions

Most popular products