Data center speed and volume are skyrocketing as analytics, high-performance computing, and artificial intelligence go mainstream. Inside hyperscale data centers, powerful components must deliver high-speed processing and faster data access with smaller, denser, hotter components that do more with less. Component-level thermal management and stress protection are required to meet these heightening performance needs.
Next-generation data centers are getting hotter. They must provide faster speeds and rapid data access with smaller, higher-density components as data volumes skyrocket. Heat degrades performance. Advanced materials help with thermal management, long-term reliability, and stress protection.
- Article
- Brochure
- Infographic
- White paper
- Routers/Switches
- Servers
- Storage
Low-modulus, high-conductivity Bergquist® GAP PAD® materials provide excellent conformability and low-stress thermal performance for IC devices not requiring a larger heat sink attachment.
Bergquist® and LOCTITE® thermally conductive adhesives are designed to provide excellent heat dissipation for thermally sensitive components. They are available in self-shimming and non-self-shimming options to satisfy application-specific requirements and ease of use.
One-part, liquid formable gel materials provide a balance between process flexibility, low component stress and high-reliability thermal performance. Dispensable for high-volume manufacturing, thermal gels are available in thermal conductivities up to 10.0 W/m-K, and provide a range of attributes including low volatility, high vertical gap stability, and reliability in challenging environments.
Larger, high-performance Layer 1/Layer 2 ASIC and/FPGA devices must effectively dissipate heat for proper function. Bergquist® phase change materials are the optimal solution, providing a mess-free alternative to thermal grease.
The use of advanced materials in server motherboards and line cards for routers and switches provides a huge upside in scale, performance, and cost reduction. One small uptick in performance, repeated thousands of times, has a huge impact on router and switch performance.
Low-modulus, high-conductivity Bergquist® GAP PAD® materials provide excellent conformability and low-stress thermal performance for IC devices not requiring a larger heat sink attachment.
Bergquist® and LOCTITE® thermally conductive adhesives are designed to provide excellent heat dissipation for thermally sensitive components. They are available in self-shimming and non-self-shimming options to satisfy application-specific requirements and ease of use.
One-part, liquid formable gel materials provide a balance between process flexibility, low component stress and high-reliability thermal performance. Dispensable for high-volume manufacturing, thermal gels are available in thermal conductivities up to 10.0 W/m-K, and provide a range of attributes including low volatility, high vertical gap stability, and reliability in challenging environments.
Larger, high-performance Layer 1/Layer 2 ASIC and/FPGA devices must effectively dissipate heat for proper function. Bergquist® phase change materials are the optimal solution, providing a mess-free alternative to thermal grease.
Whether it’s a few servers in a closet or 10,000 in a data center, a small reduction in heat or uptick in component performance can have a huge, aggregate impact on infrastructure performance. Advanced materials can be used throughout a circuit board to help optimize their performance and the network that uses them.
One-part, liquid formable gel materials provide a balance between process flexibility, low component stress and high-reliability thermal performance. Dispensable for high-volume manufacturing, thermal gels are available in thermal conductivities up to 10.0 W/m-K, and provide a range of attributes including low volatility, high vertical gap stability, and reliability in challenging environments.
Larger, high-performance Layer 1/Layer 2 ASIC and/FPGA devices must effectively dissipate heat for proper function. Bergquist® phase change materials are the optimal solution, providing a mess-free alternative to thermal grease.
Advanced materials used in storage hardware increased stability, reliability, and transfer rates. Every uptick in performance and reliability reduces costs while delivering on increasing user expectations.