Skip to Content
Henkel Adhesive Technologies

Henkel Adhesive Technologies

Controlling heat saves money while boosting network speed

Heat is the enemy of circuit boards. Leaps in board density, driven by never-ending demand for bandwidth, make the problem worse. Minimizing the aggregate heat generated by components has a lot of benefits: It improves the integrity of circuit boards, reduces cooling expenses, and lowers repair and maintenance costs. What’s not to like?
5 min.
This is an image showing an abstraction of CPU cooling technology.

Thermal stress breaks electronic components

Heat accelerates component degradation, in both performance and integrity. Electronic components need to be maintained at stable temperatures to avoid chemical reactions that break down or alter the materials within them; a general rule of thumb is that the speed of chemical reactions doubles for each increase of 10° C.

Heat also can put stress on the boards themselves, particularly when the boards run at high output for extended periods of time. Even small amounts of flexing and warping can break delicate circuit leads, which degrades performance and causes components or the board itself to fail entirely.

Faster networks mean more heat

Network traffic has grown at 27% CAGR during the last five years, and demand for data volume and speed are only accelerating. People will work from home more often, with hybrid work defining the new normal, which means even more dependence on networks, the hardware that supports them, and the data centers where they live. One result is denser network circuit boards - quadrupling in speed with no increase in rack size - and, therefore, more heat being generated inside data centers.

Active cooling has long been the answer but is expensive; the market for data center active cooling is forecast to surpass $20 billion in 2024. In general, growth in data center expense is outrunning increases in overall IT budgets, threatening profitability. It would be a significant win to manage heat at its source, reducing the need for costly active cooling.

Thermal materials reduce heat stress

Thermal management materials such as thermal gels and phase change materials play a pivotal role as networks (and the devices that comprise them) become more powerful and generate more heat. One example: Properly applied, thermal materials such as a microTIM thin film can reduce temperature on a 400 GbE module by more than 5° C - that’s a significant decrease.

The end result: Heat dissipation helps increase component life expectancy, cuts downtime and replacement cost, saves money on cooling, and allows greater bandwidth density in data centers - all while reducing costs.

Make a small change with impact

Electronic components get hot. That problem is exacerbated by the demand for improved reliability, higher power density, and greater speed.

Thermal management - a small but vital element of network infrastructure - significantly affects network operational performance. Small changes in manufacturing materials help improve reliability, even in the face of increasing demands on networks and the components that drive them. They’re a small change with a big impact.

Resources

  • This is an image of small cells with wifi antenna in a cityscape.

    Small cells accelerate mobile broadband access with reliable performance enhanced by thermal control

    This case study looks at how small cells accelerate mobile broadband access with reliable performance enhanced by thermal control.

    10 min.

  • This image shows a telecommunication tower in the city.

    Performance demands for high bandwidth 5G telecom

    This case study looks at how ultra-high thermal conductivity, heat-dissipating gel meets processing, performance demands for high bandwidth 5G telecom infrastructure systems.

    10 min.

  • This image displays a micro thermal interface coating on a pluggable optical transceiver.

    Durable TIM coating reduces heat and improves data center switch performance

    This case study looks at how durable, thin thermal interface coating reduces heat and improves data center switch performance.

    10 min.

  • A visual example of thermal management materials on a chip set.

    Automation-friendly liquid gap filler delivers on thermal control

    Learn how a manufacturer of a power converter used thermal management materials to create a more efficient product.

    5 min.

  • This image showcases a thermal gel on a component.

    Heat dissipating gel for 5G infrastructure systems

    This case study looks at how environmentally-stable, high thermal conductivity, heat-dissipating gel delivers critical cooling for 5G infrastructure systems.

    10 min.

  • An image of an ice block over a printed circuit board

    The heat is on

    Today, network performance, reliability, and durability are critical to datacom and telecom performance around the world. And when network performance is largely determined by power and cooling, the role of thermal management is only going to increase.
  • This is an image of a futuristic circuit board like a city at night

    Look small to go big

    In today’s world of unprecedented network and infrastructure expansion, the need for increased performance and stability is accelerating. This rapid expansion is further challenged by the need to process more data at faster speeds while also accommodating emerging technology developments.
  • This is an image of a network cable with fiber optical background

    The 2023 data center pulse report

    With an insatiable demand for faster networking speeds and throughput performance within the data center, 800 Gigabit Ethernet (GbE) is gaining momentum as the next big trend in networking to provide capacity to ever-growing customer demands.
  • This is an image of a man in a data center bending down

    The 2024 data center pulse report

    The influence of innovation and technology on the need to transition from 800G to 1.6T.