Skip to Content
Henkel Adhesive Technologies

Henkel Adhesive Technologies

Fiber expansion: no signs of a slowdown

While supply chain challenges and inflationary pressures are putting a squeeze on many markets, the data access sector shows no signs of letting up; the installation of advanced systems to provide data delivery improvements is moving full-speed ahead.

Farida Jensen
Market Strategy Manager

5 min.

While supply chain challenges and inflationary pressures are putting a squeeze on many markets, the data access sector shows no signs of letting up; the installation of advanced systems to provide data delivery improvements is moving full-speed ahead. The infamous ‘the last mile’ – which has long been noted as a primary source of data delivery bottlenecks – stands to shed its former negative perceptions, with next-generation passive optical networks (PONs) significantly improving performance and bandwidth. As data traffic has exploded and demands for high-speed data access have accelerated, the PON, which delivers multi-user access to high-speed broadband signals from a single optical cable, is becoming increasingly more efficient and powerful. And its growth is notable, with 2021 showing a 12% gain in broadband access equipment revenue versus the prior year, according to a report by analyst Dell’Oro Group. 

This is an image of data centers in a room.

Gigabit PON, or GPON, has been the historical fiber to the home (FTTH) solution, allowing downstream traffic rates of 2.48 Gb/second and upstream capacity of 1.24 Gb/second. But this is transitioning to the next generation to address the massive residential and enterprise bandwidth requirements. 10G PON has emerged as the new standard. With this, 10G PON’s enabling components – the optical line terminal (OLT) and the optical network unit (ONU)/optical network terminal (ONT) – are facilitating ultra-high speeds of up to 10 Gb/second symmetrical. The expansion of 10G PON is happening globally, while PON also continues to make gains. [2] By 2027, the worldwide PON equipment market is expected to generate over $18 bn, delivering a CAGR of 13.2% between 2021 and 2027. [3] 

Likewise, next-generation GPON OLT revenues are projected to climb by more than 15% during the same period, reaching $5 bn in revenue by 2027. [4]

An image of a smart city grid.

New OLT designs are integrating larger, more powerful electronic components to accommodate increased bandwidth capability (with more on the way as development of 25G and 50G PON expands). To provide this level of processing and performance, the terminal designs incorporate very large, high-powered components like switch ASICs, FPGAs, double data rate (DDR) memory, and microcontroller units (MCUs) with high power densities.   Likewise, network terminals (ONT/ONU) are also designed with advanced ICs that facilitate more capable operational capacity. These large, multi-functional devices – which can measure anywhere from 7 mm x 4 mm up to 45 mm x 45 mm -- operate constantly and generate high operational temperatures that, if not controlled, can limit performance and lifetime. Leveraging material technologies that efficiently dissipate heat from high-powered devices is essential for function optimization and reliability.

This is an image of an exploded olt diagram.

Like any electronic device, OLT and ONU designs vary by supplier, as do the thermal management strategies. There are several factors to consider, including the thermal mass of each component, a thermal management material’s automation compatibility, thermal conductivity performance, thermal impedance, and adaptability to various component tolerances, to name a few. Thermal interface material (TIM) formats are broad. They range from pads to adhesive films to liquids, gels and pastes, and optimizing a TIM solution across OLT and ONU/ONT designs for the best result for all heat-generating devices and the entire unit can be a complex endeavor. Partnering with a thermal materials supplier that provides application expertise and a diverse portfolio of solutions can help broadband access equipment developers select the best formulations for manufacturing efficiency, terminal responsiveness and long-term performance. A knowledgeable supplier with expertise in data and telecom applications, and a deep innovation pipeline ensures a trusted partner that can help system designers seamlessly transition to next-generation fiber access technologies that deliver on their promised performance.

This is an image of a transceiver with thermal management materials applied.

Resources

  • This is a futuristic concept image of a server in a data center.

    Phase change interface materials for next-gen data center ICs

    This case study looks at how low-pressure, low thermal impedance, phase change thermal interface material provides a much-needed solution for next-gen data center ICs.

    10 min.

  • This image displays a micro thermal interface coating on a pluggable optical transceiver.

    Durable TIM coating reduces heat and improves data center switch performance

    This case study looks at how durable, thin thermal interface coating reduces heat and improves data center switch performance.

    10 min.

  • This image showcases a thermal gel on a component.

    Heat dissipating gel for 5G infrastructure systems

    This case study looks at how environmentally-stable, high thermal conductivity, heat-dissipating gel delivers critical cooling for 5G infrastructure systems.

    10 min.

  • Graphic of an ac-dc power device exploded.

    BERGQUIST® LIQUI-BOND® delivers efficient solution for data center power supply

    Learn how a manufacturer of an AC/DC power supply leverages a robust thermal management solution for its compact design.

    5 min.

  • A visual example of thermal management materials on a chip set.

    Automation-friendly liquid gap filler delivers on thermal control

    Learn how a manufacturer of a power converter used thermal management materials to create a more efficient product.

    5 min.

  • An image of an ice block over a printed circuit board

    The heat is on

    Today, network performance, reliability, and durability are critical to datacom and telecom performance around the world. And when network performance is largely determined by power and cooling, the role of thermal management is only going to increase.
  • This is an image of a futuristic circuit board like a city at night

    Look small to go big

    In today’s world of unprecedented network and infrastructure expansion, the need for increased performance and stability is accelerating. This rapid expansion is further challenged by the need to process more data at faster speeds while also accommodating emerging technology developments.
  • This is an image of a network cable with fiber optical background

    The 2023 data center pulse report

    With an insatiable demand for faster networking speeds and throughput performance within the data center, 800 Gigabit Ethernet (GbE) is gaining momentum as the next big trend in networking to provide capacity to ever-growing customer demands.
  • This is an image of a man in a data center bending down

    The 2024 data center pulse report

    The influence of innovation and technology on the need to transition from 800G to 1.6T.